Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38513284

RESUMO

BACKGROUND: Surgical intervention is the main therapy for refractory vitiligo. We developed a modified autologous cultured epithelial grafting (ACEG) technique for vitiligo treatment. Between January 2015 and June 2019, a total of 726 patients with vitiligo underwent ACEG in China, with patient characteristics and clinical factors being meticulously documented. Using a generalized linear mixed model, we were able to assess the association between these characteristics and the repigmentation rate. RESULTS: ACEG demonstrated a total efficacy rate of 82.81% (1754/2118) in treating 726 patients, with a higher repigmentation rate of 64.87% compared to conventional surgery at 52.69%. Notably, ACEG showed a better response in treating segmental vitiligo, lesions on lower limbs, age ≤ 18, and stable period > 3 years. A keratinocyte:melanocyte ratio below 25 was found to be advantageous too. Single-cell RNA sequencing analysis revealed an increase in melanocyte count and 2 subclusters of keratinocytes after ACEG, which remained higher in repigmented sites even after 1 year. CONCLUSIONS: ACEG is a promising therapy for refractory vitiligo. Patient age, clinical type, lesion site, and stability before surgery influence repigmentation in ACEG. The mechanism of repigmentation after ACEG treatment is likely not confined to the restoration of melanocyte populations. It may also involve an increase in the number of keratinocytes that support melanocyte function within the affected area. These keratinocytes may aid the post-transplant survival and function of melanocytes by secreting cytokines and extracellular matrix components. TRIAL REGISTRATION: registered with Chictr.org.cn (ChiCTR2100051405).

2.
Commun Biol ; 7(1): 79, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200141

RESUMO

Autologous cultured epithelium grafting (ACEG) presents a promising treatment for refractory vitiligo, yet concerns regarding infections and immunological reactions hinder its surgical use due to serum and feeder dependencies. Addressing this, we culture autologous epithelium under serum- and feeder-free (SFF) conditions, comparing its safety and efficacy with serum- and feeder-dependent (SFD) conditions in stable vitiligo patients, and we discover no significant differences in repigmentation between the SFF and SFD grafts. Single-cell RNA transcriptomics on SFF- and SFD-cultured epithelium alongside healthy skin reveal increased populations of LAMB3+ basal keratinocytes and ZNF90+ fibroblasts in the SFF sheets. Functional analyses showcase active cellular metabolism in LAMB3+ basal keratinocytes, vital in extracellular matrix homeostasis, while ZNF90+ fibroblasts demonstrate increased differentiation, essential in collagen formation for cell adhesion. Importantly, these cell populations in SFF sheets exhibit enhanced interactions with melanocytes compared to SFD sheets. Further, knockdown experiments of LAMB3 in keratinocytes and ZNF90 in fibroblasts lead to a downregulation in melanocyte ligand-receptor-related genes. Overall, SFF sheets demonstrate comparable efficacy to SFD sheets, offering superior safety. LAMB3+ basal keratinocytes and ZNF90+ fibroblasts act as potential drivers behind repigmentation in ACEG under SFF conditions. This study provides translational insights into ACEG repigmentation and potential therapeutic targets for vitiligo.


Assuntos
Vitiligo , Humanos , Vitiligo/terapia , Epitélio , Queratinócitos , Pele , Fibroblastos
3.
Exp Dermatol ; 33(1): e15004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284190

RESUMO

The study investigated the effectiveness of EDN1 and EDN3 cytokines in the differentiation of melanocytes from hESCs. The findings showed that 100 nM EDN1 was more effective in promoting hESC to CD117+/TYR+ melanoblasts compared to 100 nM EDN3. Additionally, maintaining melanoblasts is beneficial for preserving the ability to proliferate. The study found that 10 nM EDN1 helped maintain the proliferation of melanoblasts without over maturing them into melanocytes in the late stage of differentiation. Thus, using 100 nM EDN1 in the initial stage and 10 nM EDN1 in the late stage proved to be an efficient and cost-effective method for obtaining hESC-derived melanocytes. The preliminary results suggest that EDN1 promotes melanoblast formation during the initial differentiation stage through its binding to both the EDNRB receptor and EDNRA receptor. This study provides a valuable tool for studying the development of human melanocytes and modelling the biology of disease.


Assuntos
Endotelina-1 , Células-Tronco Embrionárias Humanas , Humanos , Endotelina-1/metabolismo , Melanócitos/metabolismo , Diferenciação Celular
4.
BMC Biotechnol ; 21(1): 11, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530972

RESUMO

BACKGROUND: Human epithelial cell sheets (ECSs) are used to clinically treat epithelial conditions such as burns, corneal blindness, middle ear cholesteatoma and vitiligo. As a widely used material in clinic, there is little information on the biobanking of ECSs and its repair effect after storage. RESULTS: Two methods for biobanking foreskin ECSs were compared in a short term (7 days): 4-degree storage and programmed cryopreservation. Cell sheet integrity, viability, apoptosis, immunogenicity, mechanical properties and function were evaluated. In vivo, ECSs were directly transplanted to skin defect models and histological examination was performed at 1 week postoperatively. We successfully extracted human foreskin-derived primary epithelial cells and fabricated them into ECSs. Compared with 4-degree storage, programmed cryopreservation preserved the ECS structural integrity, enhanced the mechanical properties, decreased HLA-I expression, and increased cell viability and survival. An increased proportion of melanocytes with proliferative capacity remained in the cryopreserved sheets, and the undifferentiated epithelial cells were comparable to those of the fresh sheets. In vivo, cryopreserved ECSs could reduce inflammatory cell infiltration and promote connective tissue remodeling, epithelial cell proliferation and vascular regeneration. CONCLUSIONS: Programmed cryopreservation of ECSs was superior and more feasible than 4-degree storage and the cryopreserved ECSs achieved satisfying skin wound healing in vivo. We anticipate that the off-the-shelf ECSs could be quickly used, such as, to repair human epithelial defect in future.


Assuntos
Bancos de Espécimes Biológicos , Células Epiteliais , Prepúcio do Pênis , Inflamação , Cicatrização , Animais , Apoptose , Sobrevivência Celular , Criopreservação/métodos , Modelos Animais de Doenças , Células Epiteliais/patologia , Prepúcio do Pênis/patologia , Frutose , Humanos , Inflamação/patologia , Masculino , Melanócitos/patologia , Camundongos , Camundongos Nus , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...